On ground state solutions of −Δu = up − uq

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms

This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...

متن کامل

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

A computer assisted study of uniqueness of ground state solutions

For the problem (here u = u(x)) ∆u− u + αu + βu = 0, x ∈ R, lim |x|→∞ u(x) = 0 , with constants 1 ≤ p < q < r < n+2 n−2 , and α, β > 0, uniqueness of radial solution (called ground state solution) is not known. We present a procedure, which opens the way to produce computer assisted proofs of uniqueness for specific p, q, r, and n.

متن کامل

new conditions on ground state solutions for hamiltonian elliptic systems with gradient terms

this paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + v(x)u=g(x, v), -triangle v - b(x)nabla v + v(x)v=f(x, u), end{array} right. $$ for $x in {r}^{n}$, where $v $, $b$ and $w$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. in this paper, we give a new technique to show the boundedness of cerami sequences and establi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1992

ISSN: 0022-0396

DOI: 10.1016/0022-0396(92)90030-q